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pose we employ the recently developed techniques for exact bosonization of a finite number
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correlation function of gravitons for finite N shows that they become strongly coupled at

sufficiently high energies, with an interaction that grows exponentially in N . We show that

even at such high energies a description of the bulk physics in terms of weakly interacting

particles can be constructed. The single particle states providing such a description are

created by our bosonic oscillators or equivalently these are the multi-graviton states cor-

responding to the so-called Schur polynomials. Both represent single giant graviton states

in the bulk. Multi-particle states corresponding to multi-giant gravitons are, however, dif-

ferent, since interactions among our bosons vanish identically, while the Schur polynomials

are weakly interacting at high enough energies.
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1. Introduction

In a recent work [1] techniques have been developed for exact bosonization of a finite

number N of nonrelativistic fermions. This has opened up new possibilities for exploring

sectors of string theory non-perturbatively. One of the key motivations for this work was

the study by Lin, Lunin and Maldacena [2] of a class of half-BPS type IIB geometries in

asymptotically AdS spaces1 and their connection with the semiclassical states of a free

fermi system. Taken together with [1], the LLM work offers an excellent laboratory to

explore non-perturbative aspects of quantum gravity in the above sector. Such a study

was initiated2 in [1] using the exact bosonization methods developed there.3 In the present

work we will explore these issues in greater detail.

1Various extensions of [2] have been made. 1/4-BPS excitations were considered in [3], 1/8-BPS ex-

citations in [4] while bubbling geometries in AdS3 were investigated by [5, 6]. 1/2-BPS excitations of

AdS5 × RP 5 were considered in [7]. Extension to multi-charge 1/2-BPS case has been considered in [8].
2Related aspects of this issue were discussed in [9, 10]. See also [11, 12].
3This bosonization works for arbitrary fermion Hamiltonian and can also be applied to c = 1, free

fermions on a circle (the Tomonaga problem), etc. Also see the remarks at the end of section 2.
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In the boundary super Yang-Mills theory, the states corresponding to half-BPS LLM

geometries are described by N free fermions in a harmonic potential [13 – 15] (see also [16]).

At large N , there is a semiclassical description of the states of this system in terms of

droplets of fermi fluid in phase space; LLM showed that there is a similar structure in the

classical geometries in the bulk. This semiclassical correspondence is already remarkable

in the sense that it exhibits a noncommutative structure of two of the space coordinates

[1, 2, 17]; however, finite N effects, corresponding to fully quantum mechanical aspects of

bulk gravity, open up more interesting questions [1, 18]. Semiclassically, small fluctuations

of the droplet boundaries correspond to small gravitational fluctuations around the classical

geometries, as anticipated by [2] and shown by [19, 20] (in part using the symplectic form

calculated by [21]). At finite N only those fluctuations of the fermi system which have low

enough excitation energy compared to N can be identified with gravity modes propagating

in the bulk. From the bulk gravity point of view, the relevant (dimensionless) scale is

R/lp ∼ N1/4, where R is the AdS radius and lp is the ten-dimensional Planck scale,

since beyond these energies perturbative corrections may be expected to become large.

However, from an exact calculation in the boundary theory we find that perturbation

theory actually breaks down much later, at energies of order N1/2. It is possible that the

reason for this is cancellations due to the high degree of supersymmetry in the half-BPS

sector. A different argument for the existence of an energy scale of order N1/2 exists [22]

that suggests breakdown of weakly coupled gravity picture for the LLM gravitons at this

scale. Essentially the argument is that the size of the wavefunction (in AdS5) of an LLM

graviton excitation decreases with energy and at an energy scale of order N1/2 it becomes

order Planck scale.

At still higher energies, one would expect a description of the bulk physics in terms

of graviton excitations to break down. In fact, as we will see here, at sufficiently high

energies gravitons cease to make sense as weakly coupled degrees of freedom since their

correlations grow exponentially with N . This happens long before graviton energies are

of order N . At sufficiently high energies, therefore, we need to seek out new weakly cou-

pled degrees of freedom which can provide a more meaningful description of bulk physics

than gravitons. We will explicitly find these degrees of freedom in this paper. As we will

argue in this paper, there is strong evidence that these new degrees of freedom are giant

gravitons [23 – 25]. In the boundary theory, the corresponding single-particle states are

created by the oscillators of the bosonized theory. Since these are strictly non-interacting,

one can obviously describe physics in terms of these at all energies. Remarkably, we find

that the single-particle states created by the oscillators are also exactly the single-particle

states corresponding to the combinations of multi-graviton states (for totally antisymmet-

ric representaions) known as Schur polynomials. This does not hold for multi-particle

states. In fact, there are small but non-zero correlations among the Schur polynomials

at high energies, which distinguishes them from the oscillator degrees of freedom. In any

case, giant gravitons, which are closely related to both these boundary degrees of free-

dom, have the right properties to provide a good description of the bulk physics at high

energies. This transition from low-energy graviton degrees of freedom to more micro-

scopic degrees of freedom at high energies is expected to happen in any consistent theory
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of gravity. The remarkable thing about the LLM system is that it provides us with a

laboratory in which we can actually see this happening in a very controlled and explicit

fashion.

The organization of this paper is as follows. In section 2 we will summarize the work

of [1] 4 on the exact bosonization of a finite number N of nonrelativistic fermions. The

presentation here is somewhat different and simpler. When applied to the LLM sector, we

find that the bosonized theory is described by a free hamiltonian for N bosonic oscillators.

In section 3 we will discuss correlation functions of the modes of fermion spatial density,

which correspond to single trace operators in the boundary super Yang-Mills theory. These

are the modes for small fluctuations of the bulk metric around AdS5× S5 which preserve

the half-BPS condition. We argue that the effective low-energy physics of these modes is

described by a field theory with a small cubic coupling of O(1/N). However, the large-N

perturbation theory breaks down when graviton energies are of order
√

N . This is shown

by doing an exact calculation of graviton three-point function in section 3. This calculation

also shows that gravitons cease to provide a meaningful description of the bulk physics at

much higher energies, which may still be only a small fraction of N . Instead, at these

energies we must use the giant gravitons to provide a meaningful description of the bulk

physics. In section 3.5 we show that the single-particle states created by our bosonic oscil-

lators are identical to the single-particle states created by the Schur polynomials for totally

antisymmetric representaions. This is done by establishing a general relation between mul-

titrace operators and the bosonic oscillators acting on the fermi vacuum. We end with a

summary and some comments in section 4.

2. Review of exact bosonization

In this section we will review the techniques developed in [1] for an exact operator bosoniza-

tion of a finite number of nonrelativistic fermions. The discussion here is somewhat dif-

ferent from that in [1]. Here, we will derive the first bosonization of [1] using somewhat

simpler arguments, considerably simplifying the presentation and the formulae in the pro-

cess. Moreover, the present derivation of bosonization rules is more intuitive, making its

applications technically easier.

Consider a system of N fermions each of which can occupy a state in an infinite-

dimensional Hilbert space Hf . Suppose there is a countable basis of Hf : {|m〉,m =

0, 1, · · · ,∞}. For example, this could be the eigenbasis of a single-particle hamiltonian,

ĥ|m〉 = E(m)|m〉, although other choices of basis would do equally well, as long as it is

a countable basis. In the second quantized notation we introduce creation (annihilation)

operators ψ†
m (ψm) which create (destroy) particles in the state |m〉. These satisfy the

anticommutation relations

{ψm, ψ†
n} = δmn . (2.1)

4The work in this paper discusses two different exact bosonizations of the fermi system; here we will

limit our discussion to bosonization of the first type.
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The N -fermion states are given by (linear combinations of)

|f1, · · · , fN 〉 = ψ†
f1

ψ†
f2
· · ·ψ†

fN
|0〉F (2.2)

where fm are arbitrary integers satisfying 0 ≤ f1 < f2 < · · · < fN , and |0〉F is the usual

Fock vacuum annihilated by ψm,m = 0, 1, · · · ,∞.

It is clear that one can span the entire space of N -fermion states, starting from a given

state |f1, · · · , fN 〉, by repeated application of the fermion bilinear operators

Φmn = ψ†
m ψn . (2.3)

However, the problem with these bosonic operators is that they are not independent; this

is reflected in the W∞ algebra that they satisfy,

[Φmn,Φm′n′ ] = δm′nΦmn′ − δmn′Φm′n. (2.4)

This is the operator version of the noncommutative constraint u ∗ u = u that the Wigner

distribution u satisfies in the exact path-integral bosonization carried out in [26].

A new set of unconstrained bosonic operators was introduced in [1], N of them for

N fermions. In effect, this set of bosonic operators provides the independent degrees of

freedom in terms of which the above constraint is solved. Let us denote these operators

by σk, k = 1, 2, · · · , N and their conjugates, σ†
k, k = 1, 2, · · · , N . As we shall see shortly,

these operators will turn out to be identical to the σk’s used in [1]. The action of σ†
k on a

given fermion state |f1, · · · , fN 〉 is rather simple. It just takes each of the fermions in the

top k occupied levels up by one step, as illustrated in figure 1. One starts from the fermion

in the topmost occupied level, fN , and moves it up by one step to (fN + 1), then the one

below it up by one step, etc proceeding in this order, all the way down to the kth fermion

from top, which is occupying the level fN−k+1 and is taken to the level (fN−k+1 + 1). For

the conjugate operation, σk, one takes fermions in the top occupied k levels down by one

step, reversing the order of the moves. Thus, one starts by moving the fermion at the level

fN−k+1 to the next level below at (fN−k+1−1), and so on. Clearly, in this case the answer

is nonzero only if the (k+1)th fermion from the top is not occupying the level immediately

below the kth fermion , i.e. if (fN−k+1 − fN−k − 1) > 0. If k = N this condition must be

replaced by f1 > 0.

These operations are necessary and sufficient to move to any desired fermion state

starting from a given state. This can be argued as follows. First, consider the following

operator, σk−1 σ†
k. Acting on an arbitrary fermion state, the first factor takes top k fermions

up by one level; this is followed by bringing the top (k−1) fermions down by one level. The

net effect is that only the kth fermion from top is moved up by one level. In other words,

σk−1 σ†
k = ψ†

fN−k+1+1 ψfN−k+1
= ΦfN−k+1+1,fN−k+1

. In this way, by composing together

different σk operations we can move individual fermions around. Clearly, all the N σk

operations are necessary in order to move each of the N fermions indvidually. It is easy

to see that by applying sufficient number of such fermion bilinears one can move to any

desired fermion state starting from a given state.
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Figure 1: The action of σ†
k
.

It follows from the definition of σ†
k, σk operators that they satisfy the following rela-

tions:

σk σ†
k = 1, σ†

k σk = θ(rk − 1), [σl, σ
†
k] = 0, l 6= k, (2.5)

where (fN−k+1 − fN−k − 1) ≡ rk and θ(m) = 1 if m ≥ 0, otherwise it vanishes. Moreover,

all the σk’s annihilate the Fermi vacuum.

Consider now a system of bosons each of which can occupy a state in an N -dimensional

Hilbert space HN . Suppose we choose a basis {|k〉, k = 1, · · · , N} of HN . In the second

quantized notation we introduce creation (annihilation) operators a†k (ak) which create

(destroy) particles in the state |k〉. These satisfy the commutation relations

[ak, a
†
l ] = δkl, k, l = 1, · · · , N (2.6)

A state of this bosonic system is given by (a linear combination of)

|r1, · · · , rN 〉 =
(a†1)

r1 · · · (a†N )rN

√
r1! · · · rN !

|0〉 (2.7)

It can be easily verified that equations (2.5) are satisfied if we make the following

identifications

σk =
1

√

a†kak + 1
ak,

σ†
k = a†k

1
√

a†kak + 1
, (2.8)
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together with the map

rk = fN−k+1 − fN−k − 1, k = 1, 2, · · · N − 1

rN = f1. (2.9)

This identification is consistent with the Fermi vacuum being the ground state of the

bosonic system. The map (2.9) first appeared in [27]. The first of these arises from the

identification (2.8) of σk’s in terms of the oscillator modes, while the second follows from

the fact that σN annihilates any state in which f1 vanishes.

Using the above bosonization formulae, any fermion bilinear operator can be expressed

in terms of the bosons. For example, the hamiltonian can be rewritten as follows. Let

E(m), m = 0, 1, 2, · · · be the exact single-particle spectrum of the fermions (assumed

noninteracting). Then, the hamiltonian is given by

H =
∞
∑

m=0

E(m) ψ†
m ψm. (2.10)

Its eigenvalues are E =
∑N

k=1 E(fk). Using fk =
∑N

i=N−k+1 ri + k − 1, which is easily

derived from (2.9), these can be rewritten in terms of the bosonic occupation numbers,

E =
∑N

k=1 E(
∑N

i=N−k+1 ri + k − 1). These are the eigenvalues of the bosonic hamiltonian

H =

N
∑

k=1

E
(

N
∑

i=N−k+1

a†iai + k − 1

)

. (2.11)

This bosonic hamiltonian is, of course, completely equivalent to the fermionic hamiltonian

we started with.

For the harmonic potential, the spectrum is linear. In this case we get

H − HF =

N
∑

k=1

ka†kak, (2.12)

where HF is the Fermi ground state energy. This hamiltonian, and the LLM system that

it describes, will be the focus of our discussions in the rest of this paper.

We remark that our bosonization technique does not depend on any specific choice of

fermion hamiltonian and can be applied to various problems like c = 1, free fermions on a

circle (the Tomonaga problem) [28] etc. Also see [1] for some more details on this issue.

3. Graviton interaction

In this section we will present a quantum computation of graviton correlators from the

boundary theory. The main result of this computation, described in subsection 3.3, will

be to show that for sufficiently high energy modes, the concept of gravitons breaks down

since the strength of their interaction grows exponentially with N . We will show that

such pathological behaviour can be understood as a wrong choice of variables to describe

gravity at short wavelengths and the right variables to describe gravity at such energies

– 6 –
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are the giant gravitons in terms of which the interactions become weak. Another result of

the computation will be to exhibit a chiral ring structure of the graviton interactions at

low energies, which reduces multipoint graviton interactions to essentially a combination

of the ’structure constants’ of the chiral ring.

3.1 The exact correlators

We recall that the standard AdS/CFT dictionary identifies gravitons in the bulk to the sin-

gle trace operators TrZm which are represented in the fermion theory by the operators[15]:

β†
m =

∞
∑

n=0

C(m,n)ψ†
n+mψn, (3.1)

C(m,n) ≡
√

(m + n)!

2mn!
(3.2)

We will denote correlators of the theory as

D(m1, m2, ..., mr|n1, n2, ..., ns) ≡ 〈F0|βm1
...βmr β

†
n1

...β†
ns
|F0〉 ≡ 〈βm1

...βmrβ
†
n1

...β†
ns
〉

(3.3)

Here |F0〉 is the Fermi vacuum. An exact calculation of D(m,n|m + n) and D(m|m),

valid for finite N , can be done using either the fermion representation for the β’s (which

is simpler) or their bosonic representation in terms of the oscillators ak, a†k (see Appendix

A). We quote the results below 5:

D(m,n|m + n) =
1

2m+n(m + n + 1)

[

(N + m + n)!

(N − 1)!
+

N !

(N − m − n − 1)!

− (N + m)!

(N − n − 1)!
− (N + n)!

(N − m − 1)!

]

, (3.4)

which is valid for (m + n) < N . For (m + n) = N , we get

D(m,N − m|N) =
1

2N (N + 1)

[

(2N)!

(N − 1)!
− (N + m)!

(m − 1)!
− (2N − m)!

(N − m − 1)!

]

. (3.5)

Also,

D(m|m) =
1

2m(m + 1)

[

(N + m)!

(N − 1)!
− N !

(N − m − 1)!

]

, m < N, (3.6)

and

D(N |N) =
1

2N (N + 1)

(2N)!

(N − 1)!
. (3.7)

The normalized correlators are given by

Γ(m1, ...,mr|n1, ..., ns) =
D(m1, ...,mr|n1, ..., ns)

√

D(m1|m1)..D(mr|mr)D(n1|n1)..D(ns|ns)
. (3.8)

5Our results agree with calculations done earlier using matrix model [29].
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We will mostly deal with s = 1, that is, correlators involving only several TrZmi and one

anti-holomorphic operator TrZ̄n. These satisfy a non-renormalization theorem and one can

consistently discuss them staying within the LLM sector (loop corrections, which typically

involve intermediate states outside the LLM sector, are absent for these correlators). For

s = 1, we have ns = n1 = m1 + ... + mr.

3.2 Graviton interaction at long wavelengths

Let us first consider interaction of gravitons at low energies, where the frequencies of the

gravitons, m,n, will be considered to be small numbers held fixed in the large N limit.

We will begin by discussing the normalized correlators (3.8), and in particular the

3-point function for the first few modes m,n = 1, 2, 3.... Some examples, obtained using

the exact formulae (3.4),(3.6) are

D(1|1) = N/2, D(2|2) = N2/2, D(3|3) = 3(N3 + N)/8

Γ(1, 1|2) =

√
2

N
(3.9)

The general behaviour of the 3-point functions for various ranges of m,n is discussed in

section 3.3. The fall-off with N of the three-point function in (3.9), namely 1/N , is an

example of the more general
√

mn(m + n)/N behaviour mentioned there.

We also need the values of some normalized four-point functions, which can be calcu-

lated either using the formulae (3.2) or the relation between the β’s and the a, a† oscillators

indicated in Appendix A. A simple example is

Γ(1, 1, 1|3) =
2
√

3

N2
(1 + 1/N2)−1/2 (3.10)

3.2.1 Chiral ring structure

The three-point functions (3.4) imply following chiral ring relation:

βn βm = Ĉmnβm+n[1 + O(1/N)]

Ĉmn ∝ 1/N (3.11)

The ‘structure constant’ is given by

D(m,n|m + n)

D(m + n|m + n)
= Ĉmn[1 + O(1/N)] (3.12)

which follows from computing the correlator of both sides of (3.11) with β†
m+n. It is easy

to see (using the approximation methods of section 3.3) that for large N and fixed m,n,

the leading behaviour of Ĉmn is 1/N . We will provide evidence for (3.11) by proving the

following ‘bootstrap’ property of the 4-point function.

3.2.2 Four-point function and ‘bootstrap’

If the relation (3.11) is true, it follows that the four-point function must satisfy what we

will call a “bootstrap relation” (see figure 2).

– 8 –
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Figure 2: Bootstrap: Test for a cubic graviton field theory.

〈βmβnβpβ
†
m+n+p〉 = Ĉmn〈βm+nβpβ

†
m+n+p〉[1 + O(1/N)]

=
D(m,n|m + n)D(m + n, p|m + n + p)

D(m + n|m + n)
[1 + O(1/N)].

(3.13)

Example: For m = n = p = 1,

LHS = D(1, 1, 1|3) = 3N/4,

RHS = D(1, 1|2) 1

D(2|2)D(2, 1|3) = N/2
1

N2/2
3N2/4 = 3N/4.

(3.14)

(In this case the O(1/N) correction is absent.)

Let us discuss eq. (3.13) in a little more detail. On general grounds

〈F0|βmβnβpβ
†
m+n+p|F0〉 =

∑

n

〈F0|βmβn|n〉〈n|βpβ
†
m+n+p|F0〉 (3.15)

where
∑

n |n〉〈n| represents a sum over all states in the theory (we can restrict, for these

correlators, to states in the LLM sector, which belong to the Fermion Fock space). eq. (3.13)

implies, to the leading order in 1/N, that the only intermediate state that contributes is

β†
m+n|F0〉. This indeed turns out to be correct, because of the rather remarkable relation

which is easy to prove,

βpβ
†
m+n+p|F0〉 = Np−1

[(

1 + O

(

1

N

))

p(p + m + n)

2p
β†

m+n

∣

∣

∣

∣

F0〉 + O

(

1

N

)

β†β† · · ·
∣

∣

∣

∣

F0〉
]

(3.16)

where the last term is in general proportional to a multi-graviton state (denoted by multiple

β† acting on the vacuum). To leading order in 1/N , this term is the 2-graviton state. We

explicitly list a few examples:

β1β
†
3|F0〉 =

3

2
β†

2|F0〉

β1β
†
4|F0〉 = 2β†

3|F0〉

β2β
†
4|F0〉 = N [2β†

2|F0〉 +
1

N
(β†

1)
2|F0〉]. (3.17)
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3.2.3 Cubic gravity theory

The above discussion about the chiral ring suggests a field theory of gravitons of the

structure

S =

∫

Dmβ†
mβm + Cmnβ†

m+nβmβn + c.c. (3.18)

where the Dm and Cmn are related respectively to D(m|m) and Ĉmn, upto symmetry

factors. The notations Cmn, Ĉmn and C(m,n), defined respectively in (3.11), (3.18) and

(3.2) are to be distinguished.

The cubic interactions in (3.18) can be derived from (3.25) in 1/N expansion. They

arise solely from the definition of β’s as linear combinations of multi-a† oscillator states.

The theory (3.18) has been matched to IIB supergravity in AdS5 × S5 in the LLM sector

in the work [31].

A suggestion similiar to the above has also been made recently in the work [30]. Ev-

idence in support of this suggestion has been presented by matching direct computations

of some correlation functions in the fermion theory with cubic field theory.

3.3 Breakdown of the graviton description

In this section we will study the behaviour of the normalized three-point function derived

from (3.4)- (3.8). In the discussion below we will restrict ourselves to the case when all

the three gravitons have energies much smaller than N . It turns out that there are three

separate energy regimes of interest. Let us consider the three cases in turn.

1. m,n fixed as N → ∞. This is the large-N perturbative regime. Here

Γ(m, n|m + n) =

√

mn(m + n)

N
+ O(1/N2) (3.19)

This result can be obtained by a straightforward 1/N expansion of (3.4)-(3.7) and it

agrees with the calculation of tree-level three-graviton amplitude in supergravity [31].

2. m/
√

N ∼ n/
√

N fixed (and O(1)), as N → ∞. Here

Γ(m, n|m + n) ≈ aN−1/4 (3.20)

The quantity a is a function of the fixed ratio m2/N, a = f(m2/N). This result has

been obtained from the formula

Γ(m, n|m + n) ≈
√

m

N

sinh2 m2

N

sinh m2

2N

√

sinh 2m2

N

, (3.21)

which can be derived from (3.4)-(3.7) using the formulae given in Appendix B. Al-

though the overall strength of the interaction, ∼ N−1/4, is small, to recover the

function f(m2/N) (involving sinh(m2/N) etc.) from a perturbation theory in 1/N ,

e.g. supergravity, one needs to sum over all orders in 1/N . We see that in this

regime of energies, perturbation theory breaks down (in the sense that no finite order

calculation in 1/N will reproduce the above result).
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3. m/N ∼ n/N fixed and small as N → ∞. Here

Γ(m, n|m + n) ≈ a exp[bN ], a ∝
√

m/N, b ∝ m2/N2 (3.22)

In this case the exponent b turns out to be positive. Hence for m a small fixed fraction

of N , the correlator grows exponentially with N ! This means that gravitons become

strongly interacting in this energy regime.

In fact, already for energies m which grow as N1/2+γ , for γ > 0, the gravitons become

strongly interacting and are not useful concepts as particles. What, then, are the new

weakly interacting entities which can exist as perturbative states?

In the boundary theory that we are considering here, there are two possible candidates.

One is to replace gravitons by the oscillator excitations of the bosonized theory discussed

in section 2. These excitations are exactly non-interacting and hence they can replace

gravitons at high energies. The corresponding bulk degrees of freedom, at the level of

single-particle states (see sec 3.4.1), are the giant gravitons. The other possibility is to

replace single-graviton states by the Schur polynomial combinations of multi-graviton states

(which we will henceforth refer to merely as the “Schurs”). The main reason for this choice

is that at high energies, Schurs are weakly interacting. This can be seen from a calculation

of multi-point correlation functions of Schur poloynomials, χm(Z), which has been done

in [13]. From this work we can read off the normalized 3-point function of the Schurs:

Γ̃(m, n|m + n) ≡ < χm(Z)χn(Z)χm+n(Z̄) >

||χm(Z)|| ||χn(Z)|| ||χm+n(Z̄)|| =

√

N !/(N − m − n)!

N !/(N − m)! N !/(N − n)!
(3.23)

We see that

1. for m,n fixed, as N → ∞,

Γ̃(m, n|m + n) ∼ O(1) (3.24)

Clearly the Schur polynomials do not represent weakly interacting particles for long

wavelength modes. The gravitons (correspondig to single trace operators), with inter-

actions ∼ O(1/N), are a better description of the low-energy perturbative spectrum.

However,

2. for m/N ∼ n/N fixed and small as N → ∞, we get

Γ̃(m, n|m + n) ∼ e−aN

where a is a positive quantity of O(1). We see that Schurs have exponentially small

interactions in this regime of energies, unlike the gravitons whose interaction grows

exponentially at such large energies.

For m/N ∼ 1 fixed and n = 1 6, the 3-point function of Schurs 7 goes as

Γ̃(m, 1|m + 1) =
√

1 − m/N .

6Here n = 1 has been taken for convenience. One could have taken it to be any number of order one,

not necessarily exactly one.
7It would be more appropriate to think of this case as the coupling of a Schur to a graviton.
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So even in this case there is a small but non-zero interaction.

The above observations teach us two things: (i) description of gravitons as perturbative

spectrum breaks down for sufficiently large energies (which are, however, still ¿ N), (ii)

there is, nevertheless, a weakly coupled description available of the bulk physics, not in

terms of the old gravitons, but in terms of (the bulk counterpart of) either the oscillator

states of the bosonized theory or the Schurs. It turns out that the Schurs are closely related

to the single-particle states created by the bosonic oscillators from the fermi vacuum, a

fact that we will prove in section 3.5. Remarkably, therefore, both the choices lead to giant

gravitons as the right choice of degrees of freedom to replace gravitons at high energies.

3.4 The universal bosonic excitations

It would appear from the above discussion of the three-point functions that there is a change

of description of the perturbative spectrum from gravitons to giant gravitons as one tunes

the energy up from low to sufficiently high. In principle, we could describe bulk physics at

all energies in terms of bulk duals of the oscillators of the bosonized theory which create

‘particle’ states whose interaction strictly vanishes. In the boundary description these are

the particle states created by the bosonic operators a†m1 , a
†
m2 ... These have an energy cut-off

m = N by construction. The hamiltonian is exactly diagonal in terms of these oscillators

H =
N

∑

k=1

ka†kak

=
1

2
(N + 1)

N−1
∑

µ=0

φ†
µ φµ +

1

2

N−1
∑

µ6=ν=0

[1 − i cot
π

N
(µ − ν)] φ†

µ φν (3.25)

The second equality above is the “coordinate space” representation of the same hamilto-

nian, where φµ is a “lattice” Fourier transform of am [1].

This implies that there is a universal description of the perturbative spectrum in the

half-BPS sector in terms of states which are non-interacting at all energies (with an in-built

cut-off at m = N). Both the single trace operators and Schur polynomials create states

which are linear combinations of these states.

3.4.1 Bulk interpretation of the states a†m1a
†
m2 ...|0〉

It is clear that the bulk map of the states a†m1
a†m2

...|0〉 is a linear combination of graviton

states, as given by the equations (A.1)-(A.3) in Appendix A. Although the a†-particle

states are free, the gravitons interact because of such linear combinations. E.g., using

(A.2) and (A.3), we get

〈F0|β1β1β
†
2|F0〉 = 〈0|

(

1

2

√

N(N − 1)σ†
2 +

1

2

√

N(N + 1)
(

σ†
1

)2
)

×
(

−1

2

√

N(N − 1)σ†
2 +

1

2

√

N(N + 1)(σ†
1)

2

)

|0〉

=
N

2
. (3.26)
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Normalizing according to (3.8), we recover Γ(11|2) as given in (3.9). Note that 〈0|(a1)
2)×

a†2|0〉 = 0, as expected of strictly independent particle states.

As one considers higher and higher modes m, each βm involves a larger number of

multi-a† states and the graviton interactions become stronger.

The states a†m1
a†m2

...|0〉 have a closer relation to the states created at the boundary

by the Schur polynomials. Indeed, as we will see in the next section 3.5, the single-

particle states a†n|0〉 are identical to the states created by the Schur polynomials for totally

antisymmetric representations.

Multiple Schurs create states which are not identical to multi-a† states (see, e.g. (3.32)).

Since the giant gravitons do not appear to have perturbative open string excitations in the

half-BPS sector [32], it is likely that the giant gravitons do not interact perturbatively. This

behaviour is consistent with the multi-a† states at the boundary, since these are completely

non-interacting. Also, these boundary states have an inherent energy cut-off, consistent

with the giant gravitons. Unlike these states, the Schur states are weakly interacting at

high energies, while they interact strongly at low energies. It would seem from these

considerations that it is the multi-a† states which corresponds to multiple giant gravitons.

However, this needs to be confirmed by direct calculations of giant graviton interactions in

the bulk string/gravity theory.

3.5 Schurs and the bosonic oscillators

In this section, we will discuss a relation between the single-particle bosonic excitations

and Schur polynomial excitations. From our discussion in section 2, explicit formulae for

the graviton operators β†
m, eq. (3.2), acting on the fermi vacuum can be easily translated

into bosonized formulae in terms of the bosonic oscillators σ†
i acting on the vacuum state.

Some examples of this have been given in Appendix A. These can then be inverted to

express the latter in terms of the former.

We can get an idea of the meaning of the σ†
k|0〉 states by explicitly calculating them for

a few small values of k in terms of multiple β’s acting on the fermi vacuum. Taking appro-

priate linear combinations of β†
1|F0〉, β†

2|F0〉, β†
3|F0〉,

(

β†
1

)2
|F0〉,

(

β†
1

)3
|F0〉 and β†

1β
†
2|F0〉,

we find that

C(1, N − 1)σ†
1|0〉 = β†

1|F0〉,

C(2, N − 2)σ†
2|0〉 =

1

2!

[

(

β†
1

)2
− β†

2

]

|F0〉,

C(3, N − 3)σ†
3|0〉 =

1

3!

[

(

β†
1

)3
− 3β†

1β
†
2 + 2β†

3

]

|F0〉,

(3.27)

where C(m,n) are defined in (3.2). These can be generated from the formula

k
∑

m=1

(−1)k−mβ†
mσ̃†

k−m|0〉 + (−1)kkσ̃†
k|0〉 = 0, (3.28)

(for k = 1, 2, 3) where

σ̃†
k ≡ C(k,N − k)σ†

k. (3.29)
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Note that in writing the equations (3.27) and (3.28) we have implicitly used the fact that

the Fermi vacuum, |F0〉, and the bosonic vacuum, |0〉, are the same state. It thus makes

sense to have the β’s acting on either |F0〉 or |0〉.
As is proven in Appendix C, the recursion relation (3.28) is actually valid at a general

level k = 1, 2, . . ., and so generates all the σ̃†
k|0〉’s in terms of multiple β†

k’s acting on

the vacuum. This means that the single-particle states created by the bosonic oscillators

σ†
k acting on the vacuum are identical to the single-particle states created by the Schur

combinations of single and multi-particle graviton states. This is because the operators on

right-hand side of (3.27) have precisely the form of Schur polynomials in the completely

antisymmetric representation. Denoting the Schurs by sk, where k = 1, 2, 3, · · · , we have

s1 = TrX,

s2 =
1

2

[

(TrX)2 − TrX2
]

,

s3 =
1

6

[

(TrX)3 − 3TrX2TrX + 2TrX3
]

,

(3.30)

etc. where X is a hermitian matrix. These relations follow from the recursion formula [33]

k
∑

m=1

(−1)k−mTrXmsk−m + (−1)kksk = 0, (3.31)

which defines all the Schur polynomials in the completely antisymmetric representation8.

This equation can be proven using Newton’s identitites [35, 36]. Comparing the recursion

relation (3.28) with (3.31), we see that the expressions for Schur polynomials, sk’s, in terms

of polynomials of the traces TrXm of the matrix X are identical to the expressions for the

oscillators σ̃†
k in terms of polynomials of βm’s (acting on vacuum). In the following we will

denote these polynomials of βk’s also as sk’s, which is justified because of the equivalence

between the βm’s and single trace operators, TrXm.

The multi-particle states a†m1
a†m2

...|0〉 are, however, different from the states created

by the Schur polynomials. For example, we have

(s†1)
2|F0〉 = (β†

1)
2|F0〉

=
1

2

√

N(N − 1)σ†
2|0〉 +

1

2

√

N(N + 1)(σ†
1)

2|0〉. (3.32)

We see that the multi-Schur state is in general a linear combination of multi-particle states

of the bosonic oscillators. Moreover, using the fact that

s†2|F0〉 =
1

2

√

N(N − 1)σ†
2|0〉

8The Schur polynomials in the completely antisymmetric representation are also known as Chern polyno-

mials [33, 34]. In [33], the latter are denoted by ck, and appear in the context of topological classifications of

manifolds. The matrix under consideration is formed from components of the Ricci 2-form Rαβγδdxγ
∧dxδ.

The corresponding Chern polynomials can be shown to be closed 2k-forms, hence defining cohomology

classes on the manifold.
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we find, using the definition ||si|| ≡ ||s†i |F0〉||,

〈F0|s2
1s

†
2|F0〉

||s1||2 ||s2||
=

√

1 − 1/N,

which is an example of the O(1) interaction among the Schur polynomial states (see (3.24)).

This shows once again that multi-Schur states are different from multi-particle states of

the bosonic oscillators.

4. Summary and discussion

In this paper we have studied non-perturbative quantum dynamics of the LLM (half-BPS)

fluctuations around AdS5×S5 using its correspondence to the boundary super Yang-Mills

theory. We have seen that a description of the bulk gravitational physics in terms of the

perturbative graviton states breaks down at sufficiently high energies. This is expected in

any theory of gravity. But in the example studied here, we can go further and identify the

new weakly coupled degrees of freedom in terms of which the bulk physics must be described

at high energies. We have argued that these are the giant graviton states. A remarkable

thing about the LLM sector is that all the states in this sector, namely gravitons, giants,

Schurs, etc. can be described in terms of the set of N free bosonic oscillators ak, a
†
k. From

this point of view interactions emerge as a result of the fact that gravitons, giants, Schurs,

etc. are linear combinations of multi-particle states created by these oscillators.

An interesting feature of gravity in the LLM sector is that perturbation theory remains

valid until energies of order N1/2 are reached. General arguments for validity of pertur-

bative gravity would have given the relevant (dimensionless) scale to be R/lp ∼ N1/4.

Presumably the high degree of supersymmetry in the LLM sector is responsible for this,

but it would be interesting to have an explicit argument. A related fact [22] is that while

the size (in AdS5) of a graviton excitations becomes smaller than the 10−dimensional

Planck scale for energies larger than N1/2, the size of giant gravitons on S5 becomes larger

than Planck scale for angular momenta larger than N1/2. This also seems to suggest that a

meaningful description of physics in the bulk can be constructed in terms of giant gravitons

precisely at and beyond those energies where one might expect the graviton description to

break down.

Another question that has arisen from the present investigation is about the identi-

fication of the boundary states corresponding to multi-giants. We have seen that at the

level of single-particle states, Schurs in totally antisymmetric represenatations are identical

to the states created by the oscillators a†k. However, since muti-Schur states are different

from multi-a†k states, the former being interacting while the latter are free, one might ask

which of these correspond to the bulk multi-giant states. Clearly, this question can only be

settled by computations of interactions of giants among themselves and with gravitons (all

staying within the half-BPS sector) in the bulk string theory or its semiclassical gravity

limit.
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A. Beta’s and oscillators

In this Appendix we will collect some useful formulae about the graviton operators, β†
k.

Acting on the fermi vacuum and using the bosonization formulae, we can write a simple

expression for β†
k|F0〉 in terms of the bosonic oscillators. We get,

β†
m |F0〉 =

N
∑

n=2

(−1)n−1

√

(N + m − n)!

2m(N − n)!
θ(m − n) σ†

1

m−n
σ†

n |0〉

+

√

(N + m − 1)!

2m(N − 1)!
σ†

1

m |0〉. (A.1)

Note that the σk’s are related to the oscillator ak’s by (2.8). Also, θ(m) = 1 if m ≥ 0,

otherwise it vanishes. We list below the first few of these explicitly:

β†
1|F0〉 =

√

N

2
σ†

1|0〉,

β†
2|F0〉 = −1

2

√

N(N − 1)σ†
2|0〉 +

1

2

√

N(N + 1)(σ†
1)

2|0〉, (A.2)

etc. The action of multiple β’s on fermi vacuum can also be expressed in terms of the

bosonic oscillators. For example,

(β†
1)

2|F0〉 =
1

2

√

N(N − 1)σ†
2|0〉 +

1

2

√

N(N + 1)(σ†
1)

2|0〉, (A.3)

etc. This requires a more general bosonization formula than (A.1), which can be easily

obtained using the discussion in section 2. Finally, we note that beyond m = N , there is

no single-particle piece on the right hand side. For example,

β†
N+1 |F0〉 =

N
∑

n=2

(−1)n−1

√

(N + m − n)!

2m(N − n)!
σ†

1

N+1−n
σ†

n |0〉

+

√

(2N)!

2N+1(N − 1)!
σ†

1

N+1 |0〉, (A.4)

which is a linear combination of multi-particle states, with no single-particle component.

B. Derivation of eqn. (3.21)

We begin by noting the useful formula:

(N + p1)!

(N − p0 − 1)!
= Np0+p1+1 exp

[

p0+p1
∑

k=0

ln

(

1 +
p1 − k

N

)

]
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= Np0+p1+1 exp

[

1

2N
(p1 − p0)(p0 + p1 + 1) + O

(

1

N2

)]

(B.1)

where the first line is exact and the second line is valid for p0/N, p1/N ¿ 1. The O(1/N2)

term actually evaluates to − 1
6N2 (p2

1 + p2
0 − p0p1 + p0+p1

2 )(p0 + p1 + 1).

Using this approximation repeatedly, it is easy to prove

〈βmβ†
m〉 ≈ 2T (m) sinh

m(m + 1)

2N
,

〈βmβnβ†
m+n〉 ≈ 4T (m + n) sinh

(

m(m + n + 1)

2N

)

sinh

(

n(m + n + 1)

2N

)

,
(B.2)

where

T (m) ≡ Nm+1

2m(m + 1)
. (B.3)

For m ∼ n, the neglected terms (in the arguments of the sinh) are of order m3/N2.

Compared to the leading term (∼ m2/N), this is down by a factor of m/N . These can,

therefore, be neglected if we assume m/N ¿ 1. We can now use the two equations above

to arrive at (3.21).

C. Proof of eqn. (3.28)

In this section, we will prove equation (3.28). We will utilize the intuition derived from the

bosonization picture. The fundamental object of interest to us is β†
mσ†

k−m|0〉. First, the

bosonic creation operator σ†
k−m lifts the (k −m) top fermions by one step, creating a hole

at level N − k + m. The action of the graviton operator β†
m, (3.2), on this state is to lift a

fermion in any one of the occupied levels by another m steps, which can happen in three

qualitatively different ways, as shown in figure 3. In the first case, indicated by the lower

right arrow in figure 3, one trades a hole for another in the lower heap of occupied levels.

Alternatively, one may place the fermion from the lower heap (which requires the level n

of the fermion annihilation operator, see (3.2), to satisfy n ≤ (N − k + m − 1)) on top

of everything (which requires the level (m + n) of the fermion creation operator to satisfy

(m + n) ≥ (N + 1)). This case is indicated by lower left arrow in figure 3. In this case, the

topmost “chunk” consists only of a single fermion. Finally, if the fermion originated from

the top heap, as indicated by the top right arrow in figure 3, we must satisfy the conditions

n ≥ (N − k + m + 1) and (m + n) ≥ (N + 1).

The final state obtained in this way can be described in terms of bosonic creation

operators acting on the vacuum. We need to be careful about relative signs arising from

moving the annihilation operator ψn of equation (3.2) down by m steps as compared to

the position of the ψ†
n+m, passing through chunks of fermions on its way. Taking all this
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Figure 3: Forming the state β†
mσ†

k−m
|0〉.

into account, the result turns out to be

β†
mσ†

k−m|0〉 = (−1)m−1C(m,N − k)σ†
k|0〉

+

n=N
∑

n=N−m+1 (m≤k/2)

(−1)N−nC(m,n)σ†
k−mσ†

N−n+1(σ
†
1)

n+m−N−1|0〉

+

n=N
∑

n=N−k+m+1 (m>k/2)

(−1)N−nC(m,n)σ†
k−mσ†

N−n+1(σ
†
1)

n+m−N−1|0〉

+
n=N−k+m−1

∑

n=N−m+1 (m>k/2)

(−1)N−n−1C(m,n)σ†
N−nσ†

k−m+1(σ
†
1)

n+m−N−1|0〉,

(C.1)

where the three sums only contribute for m ≤ k/2, m > k/2 and m > k/2, respectively, as

indicated. Here and in the following we have assumed that k is even. The odd k case can

be handled similarly.

In principle, we should now use the expression (C.1) to prove that (3.28) holds at a

general level k. However, (3.28) can actually be split into two parts which cancel indepen-

dently of each other. The first part is

k
∑

m=1

(−1)k−m(−1)m−1C(m,N − k)C(k − m,N + m − k)σ†
k|0〉

+(−1)kkC(k,N − k)σ†
k|0〉 =

= (1 − 1)(−1)k−1kC(k,N − k)σ†
k|0〉 = 0.

(C.2)

where C(m,N − k)C(k − m,N + m − k) = C(k,N − k) was used. Using (C.1) and (C.2),
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what then remains to prove (3.28) is that

0 =
∑

1≤m≤k/2

(−1)k−m
n=N
∑

n=N−m+1

(−1)N−nαmnσ†
k−mσ†

N−n+1(σ
†
1)

n+m−N−1|0〉

+
∑

k/2<m≤k

(−1)k−m
n=N
∑

n=N−k+m+1

(−1)N−nαmnσ†
k−mσ†

N−n+1(σ
†
1)

n+m−N−1|0〉

+
∑

k/2<m≤k

(−1)k−m
n=N−k+m−1

∑

n=N−m+1

(−1)N−n−1αmnσ†
N−nσ†

k−m+1(σ
†
1)

n+m−N−1|0〉,

(C.3)

where

αmn ≡ C(m,n)C(k − m,N + m − k). (C.4)

To complete the proof, we proceed as follows. To make summands more equal, shift

n → n − 1 and m → m + 1 in the last sum over the index m. Redefining

n ≡ N − q + 1

m ≡ k − p
(C.5)

and dividing by (−1)k then turns (C.3) into

0 =

k−1
∑

p=k/2

k−p
∑

q=1

γpqσpq +

k/2−1
∑

p=1

p
∑

q=1

γpqσpq −
k/2
∑

p=1

k−p
∑

q=p

γ̃pqσpq, (C.6)

where γpq really just is shorthand for αmn in the new indices,

γpq ≡ αm=N−q+1, n=k−p = C(p,N − p)C(k − p,N − q + 1). (C.7)

Furthermore, γ̃pq is the analogous coefficient in the third sum over the index m, in which

the m → m + 1 ,n → n + 1 shifts were performed, i.e.

γ̃pq ≡ C(k − m − 1, N + m − k + 1)C(m + 1, n − 1) =

= C(p − 1, N − p + 1)C(k − p + 1, N − q).
(C.8)

The virtue of (C.6) is that all the sums are now written in terms of the fundamental variable

σpq ≡ (−1)p+qσ†
pσ

†
q

(

σ†
1

)k−(p+q)
|0〉. (C.9)

Changing the order in which the terms in the last sum over the index p are summed

using
k/2
∑

p=1

k−p
∑

q=p

=

k/2−1
∑

q=1

q
∑

p=1

+

k−1
∑

q=k/2

k−q
∑

p=1

, (C.10)
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swapping p for q in that sum, and using the facts that γ̃qp = γpq and σqp = σpq finally turns

the equation (C.6) that we want to prove into

0 =
k−1
∑

p=k/2

k−p
∑

q=1

γpqσpq +

k/2−1
∑

p=1

p
∑

q=1

γpqσpq

−
k/2−1
∑

p=1

p
∑

q=1

γpqσpq −
k−1
∑

p=k/2

k−p
∑

q=1

γpqσpq,

(C.11)

which is trivially true, hence concluding the proof of (3.28).
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